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The Clementine Bistatic Radar Experiment

S. Nozette,* C. L. Lichtenberg, P. Spudis, R. Bonner, W. Ort,
E. Malaret, M. Robinson, E. M. Shoemaker

During the Clementine 1 mission, a bistatic radar experiment measured the magnitude
and polarization of the radar echo versus bistatic angle, [3, for selected lunar areas.

Observations of the lunar south pole yield a same-sense polarization enhancement
around [3 = 0. Analysis shows that the observed enhancement is localized to the

permanently shadowed regions of the lunar south pole. Radar observations of period-
ically solar-illuminated lunar surfaces, including the north pole, yielded no such en-
hancement. A probable explanation for these differences is the presence of low-loss

volume scatterers, such as water ice, in the permanently shadowed region at the south
pole.

using laser iltuummtion of a particle suspen-

sion (13, 14). A high ratio, ()! same sense to

opposite sense polarizati_m and high reflec-

tivity has been detected by radar observa-

tk)ns of tile Galilean satellites of Jupiter

(15, 16, 17), the residual s_,uth polar ice cap

of Mars (18), pl)rti.ns of tile Greenland ice

sheet (19, 20), and the permanently shad-

i)wed polar craters ,,f Mercury (21-23).

These results are generally attributed t{) to-

tal internal reflection and/or CP, OE pn_-

duced by lmv h,ss frozen votariles (6), al-

though other mechanisms ]lave been pro-

posed (24). High-resolution ground-based

synthetic aperture (monostatic) radar ob-

servati_ns, from Arecib(), of the lunar s_)uth

pole revealed some small anomalous same-

sense polarization bright patche_ that ',ire

permanently shadowed (25). Brightening

and enhancement of salne sense polariza-

tion can be caused by double b_,unce reflec-

tk)ns fr()ln large bh)cks or surface roughness.

The presence of CBOE could distinguish

l_rightening and polarization reversal prt>-

duced by a hwv loss target fr()m other scat-

tering mechanisms. Bistatic radar measure-

ments, using a spacecraft m <)rbit actin_d ais

the transmitter, can be used '<{sa test fi)r

CBOE (13, 14, 20) by measuring tile echo

magnitude and D)larization sense :is a func-

tion _)f [[3.

Tile (]lcmentme 1 mission (26) prm, M-
ed data on the envir(>nment and geology t)f

the polar regions of the mo_)n (27, 2R). In

the n_)rthern hemisphere, no large basra

overlaps the polar area. The south pole,

however, is located within the S_)uth Pole-

Aitken basra (SPA), an impact crater over

2500 km in diamcter and averaging 12 km

deep near the center of the basin (29). The

pole is about 200 km inside the rim crest of

The possibility of ice on the moon was

suggested in 1961 (1). Volatiles degassed

from the primitive moon or deposited on

the hmar surface by cometary and asteroida[

impacts might migrate to and collect in
permanently shadowed cold traps near the

hmar poles, where the,, could be stable over

geologic time (1-5). Because these cold

traps receive no direct solar illumination,

and emit little radiation, they are difficult
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to observe from the Earth. Radar can iden-

tify deposits of frozen volatiles because, un-

der certain conditions, they produce a

unique radar signature (6). However, such

radar observations may not be conclusive

depending on the quantity ()f volatiles

present, the nature of the surface, and the

sensitivity of the measurements. Frozen
volatiles have much lower transmission loss

than silicate rocks, producing a higher av-

erage radar reflectivity than silicate rocks.

Total internal reflection also preserves the

transmitted circular polarization sense m

the scattered signal. An opposition surge or

coherent backscatter opposition effect

(CBOE) (7-12) may also be observed as the

phase, or bistatic angle _ (Fig. ] ), approach-

es 0. The CBOE requires scattering centers

(cracks (_r inhomogeneities) ilnbeddcd m a

low loss matrix st|oh as ice (7 9). The pres-

ervation of the sense of p{)larization fl)r
CBOE has been observed in tile laboratory

Fig. 1. Orbital geometry of the Clementine bistatic
radar experiment. The lunar polar tilt relative to the
ecliptic (1.6"), the lunar tilt toward Earth (5"), and
the bistatic angle _ between spacecraft, lunar sur-
face, and Earth receiver are shown.
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the SPA. F,ccausc _l it_ I_.cmJ.n inside tills

t_q_o_r;iphic low, the elev_ltiL,n ot the .,outh
pole is likL'ly to bc several ki[on/eters I_c[_w
the mean lunar radius, re_ultin_ in :_,nes t,f

pern,,nenl sh_lJ.w (27, Zq). A> the (:lcnl
entinc la.,cr ahimcter did n_>t oper;ite f(_r
lunar latitudes vrcater than 70 °, there is n_

ahimetry data t()r the polar re,.,i_n.,, t t.w-
c\'er, i]]tlltil-il]_ basins teRd tc_ t_lC',cr\'e c,_n-

centric synm/etry (30), rhu_. the [m_ar south
Dde i_, e_timated t_ lie nbout "5 t_ 8 km.

below the hiu,hcst plmlt eft the basin rim
(29). II the elevation el tile ,qPA rim crest

_n the near side is about I km, ;is suM_e_,ted

t,5: the Hl_d_al In_q_(31), then the pole w.uld
lit., ;it ;Ul elevation of al_uff 4 t_l 7 km.

Study of the ilhm/il-ultion conditit_ns num
the sontll Ddc of tile m_on dlliii-l_ t}/c

lilissiOl'_ revc;d i'_e;tr COl'_t, IHI]I illunmlatior_

_,fsevera] point,,, within 30 km of th<., p_4c as
well as d..lrkncss For <,thor are;is. Not ;tll Jark

rc<i,zion,,, observed by (_lemcntine arc pernm-

nentl$' dark, as the illl_l_CS w,crt_' obtained

durinM soutllcrn wihtcr, near tile tinle when

the lun',u spm axis _4_t.,lincd its m;iximuni

tilt .,lw.ay lr_mi tile sun (1.6°). Initial :umlysis

Sil_estol.[ lh;it up to _,0,000 km 2 near the

s<,uth p,le was dark durin M the mission

(27). FuMwr :lnalysis of the (:Iementine

inl;iges of tile south Dde taken over a two-

nlonth peii_)d daoweJ that SOl/le tit this

rcMi_ln was ilhHninatcd l;,_l a small pt)itioll

(< 10%) of the hlllar ilionttl, lilliiMes O( the

north pole token _)n ahcrnate orbits (10

l'ionr mtei-\als) durin M the first month and

ill/il_es i)t lilt' sonih pole tilken durill_ the
sccl_nd month were re_istt.l-ed and added

to_ethcr t,, lll_tke conll,_)sitc iliiH_es sho,,vinlg
the extent of ilhunmatcd and darkened ar-

eas (Fi_. 2). These COIl/pClsitc illl;l_eS sllOW

the extent of darkness ne;ir the st_titI'l pole is

much _reater than that :lround tile north

Fig. 2. Composite Clementine orbital images of the poles of the moon, where more than 50 separate
images have been summed together over one lunar day. In these views, areas of near permanent
ilMmination are white and areas of near permanent darkness are black. Within 100 km of each pole,
the south pole (B) shows considerable darkness ( cold traps) whereas the immediate surroundings
ot the north pole iA.) show at least an order of magnitude greater illumination, and are lherefore
warmer. The scale bar is 100 km.

p_,lc..M:iplqn<_ oilhc _l/;,<{, >l__'<1Hrt'ip, x_ill, in
;I 2.5 ° latitndc (]'5 kin)r_iditis circle ol bt,ih

poles reveals :It lea>t ('_('ll kill .] <if c]:lrkllc,>

;Iroull<l tilt" SOtlti/ p,+lc while oni\' 5 _0 kni-'

of darkness is nlea_ured ;tiOtlild the Ilorth

ptde. A conserv;iti\e ml;llysis stl_qests _in

tipper limit of 1_,500 kill" (.)l" _otith pole

terrain is likcl) to be ill pernlanent d;iik-
hess. As tile cold trap aru'a lit tile sotltll pole

is nlorc extensive tilan ;it tile Iu>rth pole, it

would be expected (2) t_> retitii] lilOic

trapped volatilcs.

In April 1994, dtiring the times when

tile Eal-th passt'd tlirini_h the (;[clnel'ltil_c

<_i'bital pLmc, the hln_lr axial tilt l<lw;trd the
Earth as viewed lr<qll the NASA IX'q,

Space Netw_>rk (DSN) was reLitively lal-TC
(4.5 ° to 5.5°). This filterable alil2i/lncilt

occurred once |]q- e;tch p_4e dnrin_ the
n/Ollth. At these l iincs the sp;lcccr:ltt, hin;lr

tar'dot, arid Earth-based receiver were ct_-

planar with tile sp;icecr',lft orbital plmle, ,lnd

included the poLtr _3: 0 c.ndition (Pit:. 1 ).
(Tlen/entine transmitted an UlllllildtlLItL',.[ _-

b;u_d (2.27_ GII:, I_.19 cm wa\elength)

right circui<u p<lllui:;itil_n (ROT) sign.el
with il net powt.,r t)| _ibOtlt ('_ '0[,1 through il>

1.1 m high _4;lil'l dlMc'l]l'l;I (t ICLA), toward :i
specific hlntn" t;ll'_et. ()ilL' tit ill<., I')SN 70 ill
:lllteilil;l,', scr\'¢d ;iS ;I receiver. L')n ? and 10

April 1994, bist;it ic i_l<Lir _d_servnt i<ills welc'
illtide tit tilL' south p<,le I-L'_ioll duiiil_ orbit>

2_,4, 2_,5, 2:t6, and 2_7. ()ll 2:; and 24 i\pril

1994, ol_scrvations ,if the north p_4c WClC

c_nducted on l_l-hit* 299, :iO], _llld _102.

Analytical restllts t]_l <,rl,its 2_4, 2:;5, _,01,
and _02 :ire presented l/ere. Tile other <>l
bits had systcnmtic errcirs origin<lting ill tll__'

spacecra[:t <ti'_d the _i'¢)tlDd .,,tcltion.', th_it

made the data unu_n[qe. Iriterprctatit_n _,1

the surtace pt',ysica[ properties invc>lvcd

CcHl/pai'ist)n (if the' lllL';lStll'Cd Co'he COlllp,_-

ilei]ts with scatterin_ models (42). In the
initial analysis, the polciri:<ltion ratit> \vats

cclnlpmed to _ and local surf]ice <ingle _,1

Fig. 3. A) Circular polar A
ization ratio (RCP/LCP) -3
as a function of 13for or
bit 234 for a 2.5 radius
latitude band cenlered -3.5

on the lunar south pole
and for orbit 235. for a m -4

2.5 radius periodicallyil _.

Ihiminated band cen O,,-4.5
tered at 82.5 S, and for _"

orbils 301 and 302, orig O -5
inating from a 2.5 radius
ba_sd centered at the -5.5
north pole. The area
sampled is approximate
ly 45.000 km:' (orbits -6
234. 301, and 30211to -5
170.000 km' (orbit 235)
(B) Individual polarization
channel [RCP and LCP)

LCP 235
std = 0.11 dB

LCP 234 g'_O_a_''/'_/'v/_--'__

RCP 235 "__"PZ_

RCP 234 "_"z_/_/'_f -/"% -_"--'w-_f>_,. _

-5 -4 -3 -2 -1 0 1 2 3 4 5

I_(degrees)

eclqo power response used on a frequency bin by bin basis to compLlte tile orbit 234 and 235 polarization ratios.
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incidencc(33).Thescatteringvahiespre-
sentedrepresentregionalaverages.The
normalizedradarbackscattercrosssection
(radar cross section per unit area) was esti-

mated from tile r;idar equation (34) and

specific areas illuminated on the lunar stir

face. Typical values of normalized radar
cross section derived from C[emcntine data

fi_r the near-polar regions, -80°(S) to

82.5 ° (S) (84 ° unvle of incidence, [3 -

+ 1°), ;ire -2g dB LCP (left circular polar-

izatiun) and -1,3.5 dB RCP, consistent

with previous work (25). During orbit 234

the [3 - 0 track (tile locus of [3 = 0 points)
and the center of the HGA beam were close

(within 0.5 ° of each uther and the south

pole) which provided filr good illumination

of tile entire pernlanently shadowed .,outh

pole region at the [3 = 0 condition. Orbit

235 has no [3 = 0 points near the south pole

lind is representative of periodically solar
ilhintmated hinar surfilce. A noticeab]e

peak in RCP/LCP occurs around [3 = 0 fi_r

the orbit 2_,4 Doppler bins contained with-
ill a 2.5 ° radius band centered ell the hmar

south polc (Figs. $ and 4). Orbit 235 yiekted

no discernible enhancement in latitude

bands that exchide the south po[e region

(Fix. _). Tile peak m the RCP/L('P ratio

observed in orbit 2 34, at [3 = O, is due to

enhanced power received m the RCP chan-

nel (Fi x. _) as opposed to a reduction in

LCP, as seen :it [3 _ 2.5 to 3+0°. No st<it:s-

t:tally significant enllm3celnent was ol_-
served m orbit 234 1.CP (35).

During orbits ?,01 and :t02 the spacecnlft

was rt+ughly fi+tlr times closer to tile lunar

mirth pole surface at _ = t) than during the

s,+uth po[c ,>bscrvations. The corresponding

antenna pattern had a proportioniilly small-

er fi_otprint, and the incident power density

was roughly an order of magnitude greater
tharL for the lunar south pole. More st.nsi-
tivity is therefore expected in detecting
scatter:rig enhancelnent. Tilt. lunar north

pole observations showed D.t) statistically

significant polarization cnhancemems at [3

= 0 (Fig. _,). These observations were av-

eraged over a latitude band of 2.5 ° radius,

centered on tile north pole, cent;tining :m

area comparable with tile orbit 2 _4 south

pole observations. As tile spacecraft vehic-

ity was greater near the north pole there are

fewer [3 - 0 points in orbits 301 and _02.

This produces flatter curves due to the fil-

tering process (Fix $).

(]lementille polar observations were

conducted at incktence angles of 82 ° to 90 °.

Hivh incidence :ingle scattering is difficult

to predict and can exhibit unusual behavior

dtie to shadowing, diffraction, and multiple

scattering effects (36). th>wevcr no polar-
::at:on ratio enhancement was observed on

orbits :f01 and _,02, which had similar high

incidence angle Reolnetry and greater stir-

i]tce power illumination than orbits 2 $4 ;rod

255. Additinnalb,,, orbits 234, 235, _01, and

;;02 were re-analyzed, independently of [3,

to include only target ;ire:is at high h,cal

incidence :ingles (82 ° to 90°). Only orbit

2 _4 showed an enhanced polarization ratio

;it hil_h local incidence angles, which inde-

pendently olrresponds to south pole ilhnni-

natit)n ;it small [3. All other urbits exhibited

l<lwer polarization ratio and no local angle

of iricidence dt-'pendent RCP/LCP en-

hancements. Statistical analysis (37) yiekts

only it small probability (<5%) that tile

polarization ratio enhancclnent on orbit
254 is due tO ralldoin variation in the d:l{a

(Table 1), Hlld is prot_ably not attril+utable
to angle <if incidence.

h is not- certain whcthcr the enilarice-

itlent seeri in orbit 234 is due to CBOE or

some other scattering eft_,ct. The (YBC)E

peak tlstlally predicted from lossless volume

scattering shoukt be much narrower

(<0.1°), and also show a larger enhance-

menl in RCP and k('P, than was observed

(7-12, 23). There are several possible ex-

planations fi_r these observations, mchldmg

the possibility that they :ire not due to

CBOE from ice deposits. The orbit 234 data

}lave been averaged over a large area of

lunar surfilce (45,000 kin') of which 14 to

33'74, is permanently shadowed (Fig. 4). If

tile putative ice deposits :ire small and

patchy, the tllal_{nitude t)f the polarization

0 o

oo

180°

FiO.4. Clementine mosaic of the south pole re-
gion of the moon showing area sampled on orbit
234.The white outline indicates the nominal area

at the time of peak RCP response on orbit 234, as
shown in Fig. 3. The limits of this area are defined
by contours of constant Doppler shift of the re-
ceived signal and the RF terminator on an ideal-
ized spherical moon. The spread of Doppler shift
was chosen to maximize the fraction of perma-
nently shadowed ground in the area sampled. On
the actual moon, the true boundaries are irregular,
owing to topography, and the fraction of the sam
pied area occupied by permanently shadowed
ground probably is higher than in the idealized
case.

reversal will be muted by reflections fn)ni

tilt' larger surroutlding hinar surface area.

Rocky lunar reg.lith inay cover and bc
inixed with any ice deposits, further redtlc-

ing the peak amplitude by increasing loss in

the Inediulli. Usinl_ the <,bserved orbit- 2 t4

inaximtnn, arid median R(;P/LCI _ ratios

(Fig. _ and Table 1), and methods used to

cstitnate tile extent of the Mercury polar
deposits (23), we estimate tile pure ice

eclUiValenl area <,f putative south pole ice

deposits to be un the order of 0.2 to 0. :P_>of

the observed region, _i :lppr_lxin/iltely 90 to
135 km 2. This area is ct)nsistetlt with sltlal]

patches of high ( > 1) It( _'P/I.( :P surf, ice ol_-
served from Arecibo (25). The estimate

may be ii lower limit, its the viewing gctlnl-
etry does not allow observat-iorl of tilt_, deep-
est parts tip tile shadowed tcrr<lin. Tile broad

urbit 2 34 RCP/1.CP pt-'ak tltld tilt_' low v_tltle

of RCP/L(21 + (< l) ',ire consistent with rig-
orous theoretical calcul',tti_ms of CBOE 6_r

me,,isurenlents inside _it grazing incidence

angles, assuinmg wavelength scale scatterers

ilnbeddcd in a lossy medium (7 12). The

observed orbit 2_4 RCP peak width and

magnitude is predicted by ('BC)E theory if
tilt' scattering centers arc notlspherica] ( ] I )

',rod cover only a fraction of the sampled

area. In this case the predicted L(2P peak

amplitude wtluld be significantly smaller

and its width much larger than the t>bserved
orbit 234 RCP peak (12), _il]cl iS not observ-
able in the (21ementinc data owing to the

itlherent fluctuation of the much larRer

LCP backgroup, d. This does not prechide

the existence of a number of small scatter-

ing areas with RCP/1.(:P >> 1 and corre-

sponding sharper L('P peaks that callnt)t be

resolved it, the data. These nsstunptions ;ire

geologically realistic i_lr patchy, dirty ice.
Other scattering ii/ech;qniSlliS (roughness,

double bounce) Inil_ht explain the observed
south pole R('.P en]-i;tnten/ent-, lhlwever,
the (;[elllentiFle bistatic radilr dala tlll[y

sh,/w this el'ihaltcentent ;irtlulld [3 = 0 in ',in

area ai ihc hln;ir soudl pole COlltahling ;it

lenst 6361 knl 2 of perll/;inently shadowed

Table 1. Circular polarization ratio (RCP/LCP)
median value with 95°'o confidence interval for
data sorted as a function of incidence angle, not
as a function of [?>.All frequency bins representing
82'-' to 90 _ angle of incidence are included and
presented as a median value. Because the orbit
234 RCP/LCP ratio is statistically greater than the
other orbits, it is unlikely that this larger ratio would
be found for other orbits when sorted on the basis

of high angle of incidence.

Orbit RCP/LCP median value (dB)

234 0.449 + 0.019( 3.476 + 0.178)
235 0.325 +0.011 ( 4.885 + 0.151)
301 0.354 + 0.014( 4.512 + 0.171)
302 0.318 • 0.012( 4.978 + 0.166)
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terrain+ (:k'mcminc bistatic radar data tak-

en (rom other, intcrnfittcntly sunlit areas

with simil;_r _comctry, mid sul_jcctcd re the

S_III/C' data redllcti_)l] [_roc_+ss, sht+W nt+ cvi-

Jcncc .f such m_ enhancement+ Thi_ luads

to thu conclusiot_ that the scattcrin£ mr,oh-
;raisin rcsponsibh: liar the orbit 2+4 cn

hm+ccnlcnt is associated with the pcrma-
rwntly 4+uJ,,wcJ tcrrmn, whicla b, su_us-

tivc of a muted (:IX')E ori_inatin£ front

small p:lrchcs o( icc (mad/or _tht'r frozcn

volatilcs) c_wctcd and mixed with rocky
tnatcria[.
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noise temperature changes, erroneous data bridge-
ever. transmitter Irequency variation, transmitter

power variation, and antenna poinling A small

artlount of eorrupled data is inevitably recorded The

short periods of corrupted data were flagged and

supt)ressert dunng subsequent analyses. Space
craff attitude tiles were corrected for known time

base and pointing systematic errors. One way light
time propa(jation delay effects were included Sys

lematic errors that simultaneously affect the absolute

baseline or bias measurement of each polarization

channel were estimated 1o be less than * 2 dB Sys
tematic errc, rs in the ratio measurements are esti

rqated at _025 dB. The syster'natic errors common

to both channels are suppressed when considering

the ratio. ] hermal noise variation is negligible be

cause several hundred to several thousand frequen

cy bins were averaged together, each having a ther

real SNR greater than 10. Target speckle variation is
believed to be the dominanl stochaslic error source.

Tire mean value and error bars given in Fig. 3 are

derived by reducing the data set standard deviation

by lhe square root of lhe number of noncoherently

averaged samples represented by each point on the

plot The use of noncoherently averaged FFTs and

36.

37.

38.

numerous frequency bins reduced this vanation to
about _0.1-0.2 dB standard deviation. Medianfilt(r

ing was used Due to the time sampling, regional
averaging, and spacucraff system characleristi:;s

the resolution in p is '02". Due to Doppler bin

migration (+ 1 binl, phase noise of the spacecraft

oscillator (+2 bins), and FFT windowing effects (:+ 2

bins), the Doppler band regions have an estimated
rms resolution uncedainty of about +25 km at 8fY

latitude, for the 16,384 point FFT data files.

L Tsang, J. A. Kong, R. T. Shin, Theory of M_cn>

wave Remote Sensing (Wiley-lnterscience, Ne,,_¢

York, 1985).

A standard analysis o4 variance (ANOVA) for unbul

anced design was performed on the data from ea:_h

orbit. ANOVA lests the null hypothesis that the

means are the same and only appear different in
measurement because of random fluctuations in tl e

data ]-his analysis tests the statistical significance )t

the differences among the means. The data repre-

senled target return bins corresponding to angles :,i

incidence greater than 82".
The authors thank the NASA/JPL and Deep Spare

Netwerk individuals who supported and helped carry

out these observations, in particular S. Asmar; tt_e

Clementine lunar operations team led by T So-

rensen, assisted by R. Campion and T. Tran; P.

Rustan of the U.S. Air Force, the Clementine 1 pr:)-

gram manager, D. Duston of BMDO, and L Wood of

LLNL; and R. Simpson and G. Pettengill for review

and insight. Funding for this work was provided by
the Department of Defense, including the BallistJc

Missile Defense Organization, the Naval Research

Laboratory, the US. Air Force Phillips Laboratory

Space Experiments Directorate, the Department 9f

Energy, Lawrence Livermore National Laborat@y,
and NASA. This paper is Lunar and Planetary Insti-

tute contribution 899

3 June 1996; accepted 22 October 1996

1498 S_.:IEN(.:E • Vet.. 274 • 2g NO\/EMBER 1996




